Colette:面向技术文档的本地多模态检索增强生成(RAG)开源平台
• 核心采用视觉RAG(V-RAG)技术,将文档转为图像处理,完整保留图表、布局等视觉元素,提升对复杂技术文档的理解能力
• 支持文本RAG,结合非结构化文本抽取、嵌入和主流大语言模型,实现多模态融合检索与交互
• 多模型支持,兼容多种嵌入器与视觉语言模型,灵活适配不同场景
• 集成图像生成(diffusers),增强交互体验与内容创作能力
• 自托管部署,基于Docker,满足数据隐私需求,适合存储和处理敏感技术资料
• 适用环境配置明确(GPU≥24GB,内存≥16GB,磁盘≥50GB),确保性能稳定
• 详细命令行与Python API示例,方便快速集成与二次开发
• 困难排查指南助力优化检索准确性,支持社区反馈与持续迭代
从本质看,Colette围绕“视觉优先”的多模态理解方法,突破传统文本检索局限,提升技术文档智能交互的深度和精度,适合企业与研发机构构建安全、可控的知识管理系统。
#资源参考 #RAG
• 核心采用视觉RAG(V-RAG)技术,将文档转为图像处理,完整保留图表、布局等视觉元素,提升对复杂技术文档的理解能力
• 支持文本RAG,结合非结构化文本抽取、嵌入和主流大语言模型,实现多模态融合检索与交互
• 多模型支持,兼容多种嵌入器与视觉语言模型,灵活适配不同场景
• 集成图像生成(diffusers),增强交互体验与内容创作能力
• 自托管部署,基于Docker,满足数据隐私需求,适合存储和处理敏感技术资料
• 适用环境配置明确(GPU≥24GB,内存≥16GB,磁盘≥50GB),确保性能稳定
• 详细命令行与Python API示例,方便快速集成与二次开发
• 困难排查指南助力优化检索准确性,支持社区反馈与持续迭代
从本质看,Colette围绕“视觉优先”的多模态理解方法,突破传统文本检索局限,提升技术文档智能交互的深度和精度,适合企业与研发机构构建安全、可控的知识管理系统。
#资源参考 #RAG